Spectrophotometric Analysis

OBJECTIVES

• Practice calculating and performing dilutions of solutions.
• Determine the concentration of phosphate in a water sample by spectrophotometric analysis.
• Construct and utilize an absorbance and calibration curve.
• Explore the dynamics of working with a larger group of students

BACKGROUND

• Spectrophotometric Analysis and the Determination of Phosphate
• The Absorbance Curve
• The Calibration Curve

Chromogenic Reaction of Phosphate

\[
\text{NH}_4\text{VO}_3 + \text{MoO}_4^{2-} + \text{PO}_4^{3-} \rightarrow (\text{NH}_4)_3\text{PO}_4 \cdot \text{NH}_4\text{VO}_3 \cdot 16\text{MoO}_3
\]

Chromogenic Reagent, AV solution

Spectrophotometric Analysis and the Determination of Phosphate(1)

Spectrophotometric Analysis and the Determination of Phosphate(2)
Spectrophotometric Analysis and the Determination of Phosphate (3)

Color absorbed or transmitted?

Complementary color

Beer-Lambert Law

\[
\epsilon = \frac{A}{b c} = -\log_{10}(\text{T})
\]

\[
T = \frac{P}{P_0} \times 100\%
\]

PROCEDURE-- Part A.

- **Organizing your group**
 - Prepare a group of phosphate solutions with concentrations range from \(1.00 \times 10^{-5}\) M to \(4.00 \times 10^{-4}\) M.
 - Each student is responsible for making at least one of the solutions and measuring at least one data point of Absorbance.

PROCEDURE-- Part B.

- **Preparation of Standard Solutions**
 1. Pipet 0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 mL 1.00 \(\times 10^{-3}\) M phosphate stock solution into 1 - 6# 50-mL volumetric flasks, respectively.
 2. Pipet 2.00 mL 2M HNO₃ solution into each 1 - 6# 50-mL volumetric flask.
 3. Pipet 1.00 mL of the ammonium vanadomolybdate stock solution into each 1 - 6# 50-mL volumetric flask.
 4. Dilute the solution by filling the volumetric flask until the meniscus reach the mark.
PROCEDURE-- Part C.

- **Adjusting the Spectrophotometer**
 1. Turn on the spectrometer to warm-up (15min).
 2. Adjust the wavelength to 400nm. Use a blackblock to adjust T=0%.
 3. Wash and rinse the cuvettes. Insert a cuvette filled with ¾ blank solution to set T=100%.

PROCEDURE-- Part E.

- **Making the Absorbance Curve**
 1. Rinse another cuvette and ¾ fill the rinsed cuvette with the 6th solution.
 2. Insert the cuvette into the spectrometer. Measure and record A in 400-450nm every 10nm.
 3. Find λ_{max}.

PROCEDURE-- Part F.

- **Making the Calibration Curve Using the standard Solutions**
 1. Rinse the same cuvette, ¾ fill the rinsed cuvette with the 1st solution.
 2. Insert the cuvette into the spectrometer. Measure and record A at λ_{max}.
 3. Repeat above step for 2nd-5th solutions.
 4. (All data points for a given curve must be measured with the same cuvette)

PROCEDURE-- Part G.

- **Determination of Unknown Concentration**
 1. Pipet 5.00 mL of the unknown, 2.00 mL HNO$_3$ and 1.00 mL of the ammonium vanadomolybdate solution into 7th 50-mL volumetric flask.
 2. Dilute the solution by filling the volumetric flask until the meniscus reach the mark.
 3. Half-fill the rinsed cuvette with the unknown solution. Use the spectrometer to measure A.
 4. Determination of unknown concentration by using the calibration curve.

Data?

- Make the curves using a computer
- Softwares, such as excel and origin

![Data Graph](image)